k_{-i} / k_{iv}, which represents the relative reactivities of A toward PPh_{3} or H_{2}, is about thirty. The greater reactivity of the tricoordinate intermediate toward the more basic phosphine is not surprising although the ratio of 30 is higher than that previously estimated. ${ }^{4.6}$

In accord with the above discussion, the first-order rate constant for the reaction of $\mathrm{H}_{2} \mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{2}$ with CO to give RhCl (CO) $\left(\mathrm{PPh}_{3}\right)_{2}$ would represent the upper limit for unimolecular H_{2} elimination from this adduct in benzene, i.e., $k_{-\mathrm{iv}}$. If indeed $k_{-\mathrm{iv}} \leq 2.6 \mathrm{~s}^{-1}$, several other numerical parameters can be calculated for the model described in Scheme II. First, the equilibrium constant $K_{\text {iv }}$ for H_{2} addition to A ($k_{\mathrm{iv}} / k_{\text {-iv }}$) would be $\geq 4 \times 10^{4}$ $\mathrm{M}^{-1}\left(23^{\circ} \mathrm{C}\right)$, somewhat larger than the value reported for $K_{\mathrm{ii}}(6.4$ $\left.\times 10^{3} \mathrm{M}^{-1}, 25^{\circ} \mathrm{C}\right) .{ }^{24}$ Second, given that the relationship $K_{\mathrm{iii}}=$ $K_{\mathrm{i}} K_{\mathrm{iv}} / K_{\mathrm{ii}}$ must hold, the values of K_{i} and K_{iv} described here plus the reported value of K_{ii} would give a $K_{\mathrm{iii}} \geq 1.4 \times 10^{-6} \mathrm{M}$, surprisingly larger than $K_{\mathrm{i}}\left(2.7 \times 10^{-7} \mathrm{M}\right)$. In addition, the rate constant $k_{\text {iif }}$ for PPh_{3} dissociation from $\mathrm{H}_{2} \mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{2}$ has been reported ${ }^{6}$ from NMR exchange experiments to be $500 \mathrm{~s}^{-1}$ in 25 ${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. If it is assumed that the rates are little affected

[^0]by the solvent differences, a $k_{\text {-iii }}$ limit of $\leq 4 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ results. This value would appear to be rather high, although the reaction represented is between an unsaturated d^{6} complex and a twoelectron donor. The reported ${ }^{6} k_{\mathrm{iii}}$ also appears high for the dissociation of a two-electron donor from Rh(III), although this might be explainable by the probable position of the labilized phosphine being trans to a hydride ligand.

In summary, the above flash photolysis studies have successfully interrogated the quantitative reaction dynamics of the tricoordinate intermediate $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{2}$ and related reactive intermediates. These results have proved consistent with the generally accepted mechanism for the $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ catalysis of alkene hydrogenation but have provided a much firmer experimental basis for proposed reactivities of several key intermediates.

Acknowledgment. This research was supported by grants from the National Science Foundation. We thank Johnson-Matthey, Inc. for a loan of the rhodium and iridium.

Registry No. $\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}, 13938-94-8 ; \mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{2}, 68932-$ 69-4; $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}, 14694-95-2 ; \mathrm{H}_{2} \mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{2}, 12119-41-4 ; \mathrm{RhCl}-$ $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}, 12120-14-8 ;\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{2}\right]_{2}, 14653-50-0 ; \mathrm{IrCl}(\mathrm{CO})$. $\left(\mathrm{PPh}_{3}\right)_{2}, 14871-41-1 ; \operatorname{IrCl}\left(\mathrm{PPh}_{3}\right)_{2}, 31690-54-7 ; \mathrm{CO}, 630-08-0 ; \mathrm{PPh}_{3}$, 603-35-0; $\mathrm{C}_{2} \mathrm{H}_{4}, 74-85-1 ; \mathrm{H}_{2}, 1333-74-0 ; \mathrm{D}_{2}, 7782-39-0 ; \mathrm{IrCl}\left(\mathrm{PPh}_{3}\right)_{3}$, 16070-58-9.

Synthesis of (\pm)-Catharanthine, (+)-Anhydrovinblastine, and (-)-Anhydrovincovaline

Stanley Raucher,*1 Brian L. Bray, and Ross F. Lawrence
Contribution from the Department of Chemistry, University of Washington, Seattle, Washington 98195. Received August 4, 1986

Abstract

An efficient total synthesis of (\pm)-catharanthine (1) has been accomplished. Diels-Alder reaction of 8 with α-chloroacryloyl chloride followed by reaction with MeOH gave 9 . Treatment of 9 with $\mathrm{Me}_{3} \mathrm{SiI}$ gave $\mathbf{1 0}$, and reaction of 10 with indole-3-acetyl chloride provided 11, which was converted to 13. Irradiation of 13 in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ with a 450 -W Hanovia mercury lamp through a Pyrex filter provided 14. Reduction of 14 by treatment with $\mathrm{Et}_{3} \mathrm{OBF}_{4}$ and $\mathrm{NaBH}_{3} \mathrm{CN}$ gave (\pm)-catharanthine (1). The coupling of synthetic (\pm)-catharanthine with natural (-)-vindoline (2) via modified Polonovski reaction provided $(+)$-anhydrovinblastine (15a) and (-)-anhydrovincovaline (17a), which could be easily separated by flash chromatography.

The dimeric Catharanthus alkaloids vinblastine (3a) and vincristine (3b) are efficacious, clinically useful anticancer agents which are used routinely for the treatment of a number of human cancers. ${ }^{2}$ These compounds have been shown to block mitosis with metaphase arrest by binding to the cell protein tubulin and preventing the assembly of microtubules. ${ }^{2}$ Unfortunately, the isolation and purification of these compounds is a difficult process. For example, vincristine (3b) constitutes only 0.00025% of the dry weight of the leaves of Catharanthus roseus and must be separated from over sixty other alkaloids. ${ }^{3}$

[^1]It has recently become possible to prepare $\mathbf{3 a}$ and $\mathbf{3 b}$ with the correct $\mathrm{C}\left(16^{\prime} S\right)$ configuration. The coupling of $(+)$-catharanthine (1) and (-)-vindoline (2), both obtained from Catharanthus roseus, gives (+)-anhydrovinblastine (15a); subsequent elaboration of $\mathbf{1 5 a}$ provides $\mathbf{3 a}$ and $\mathbf{3 b} .^{4}$ Although (-)-vindoline is the major alkaloid in Catharanthus roseus and is readily isolated and purified, ${ }^{5}$ this approach is severely limited since $(+)$-catharanthine is only a minor constituent and is substantially more difficult to

[^2]obtain and purify. ${ }^{6}$ An attractive solution to this problem would involve the coupling of synthetic catharanthine with readily available natural (-)-vindoline. Thus, the development of an efficient method for total synthesis of catharanthine ${ }^{7}$ holds the key to the preparation of semisynthetic vinblastine (3a) and vincristine (3b). It also opens the possibility for the synthesis of a variety of dimeric analogues.

Results and Discussion

Total Synthesis of (\pm)-Catharanthine. ${ }^{8}$ The key step in our strategy for the synthesis of (\pm)-catharanthine (1) called for the Diels-Alder reaction of 1-carbomethoxy-5-ethyl-1,2-dihydropyridine (8) with a suitable dienophile to give an appropriately substituted isoquinuclidine. Since isoquinuclidines have been previously prepared by the reaction of 1 -carboalkoxy-1,2-dihydropyridines, ${ }^{9}$ this approach is limited by the availability of the requisite dihydropyridine 8 .
An excellent procedure for the synthesis of 1-carbomethoxy-1,2-dihydropyridine by the reaction of pyridine, methyl chloroformate, and NaBH_{4} has been developed. ${ }^{9 \mathrm{a}}$ Unfortunately, reaction of 3 -ethylpyridine by this procedure affords 1 -carbo-methoxy-3-ethyl-1,2-dihydropyridine. ${ }^{10}$ the incorrect regioisomer for a synthesis of catharanthine. Thus, the preparation of $\mathbf{8}$ by an oxidative process from the tetrahydropyridine 6 was examined. We had previously prepared a 1 -acyl-5-ethyl-1,2-dihydropyridine by a bromination-double dehydrobromination sequence. ${ }^{11}$ This strategy also proved useful for the preparation of $\mathbf{8}$ from 3ethylpyridine. ${ }^{12}$ Reaction of 3-ethylpyridine with benzyl chloride gave 1 -benzyl-3-ethylpyridinium chloride (4) which was reduced with NaBH_{4} in ethanol to provide 1-benzyl-3-ethyl-1,2,5,6tetrahydropyridine (5). Debenzylation of 5 by treatment with methyl chloroformate provided 1 -carbomethoxy-3-ethyl-1,2,5,6tetrahydropyridine (6). Reaction of 6 with Br_{2} gave the dibromide 7, and double dehydrobromination of 7 with EtAlCl_{2} in HMPA gave 1 -carbomethoxy-5-ethyl-1,2-dihydropyridine (8). ${ }^{12}$ This extremely mild double dehydrobromination procedure is crucial
(6) Svoboda, G. H.; Neuss, N.; Gorman, M. J. Am. Pharm. Assoc., Sci. Ed. 1959, 48, 659 .
(7) Previous total syntheses of (土)-catharanthine: (a) Buchi, G.: Kulsa, P.; Ogasawara, K.; Rosati, R. J. Am. Chem. Soc. 1969, 92, 999. (b) Marazano, C.; LeGoff, M. T.; Fourrey, J. L.; Das, B. C. J. Chem. Soc., Chem. Commun. 1981, 389. (c) Keuhne, M. E.; Bornmann, W. G.: Earley, W. G.: Mark, I. J. Org. Chem. 1986, 5l, 2913. Relay synthesis: (d) Kutney, J. P.; Bylsma, F. Helv. Chim. Acta 1975, 58, 1672. Formal total syntheses: (e) Trost, B. M.; Godleski, S. A.; Belletire, J. L. J. Org. Chem. 1979, 44, 2052. (f) Imanishi, T.; Shin, H.: Yagi, N.; Hanaoka, M. Tetrahedron Lett. 1980, 2l, 3285 .
(8) Preliminary communication: Raucher, S.; Bray, B. L. J. Org. Chem. 1985, 50, 3236.
(9) (a) Fowler, F. W. J. Org. Chem. 1972, 37, 1321. (b) Knaus, E. E.; Pasutto, F. M.; Giam, C. S. J. Heterocycl. Chem. 1974, 1l, 843. (c) Knaus, E. E.; Pasutto, F. M.; Giam, C. S.; Swinyard, E. A. J. Heterocycl. Chem. 1976, 13,481 . (d) Knaus, E. E.; Redda, K. Can. J. Chem. 1977, 55, 1788. (e) Sundberg, R. J.; Bloom, J. D. Tetrahedron Lett. 1978, 19, 5157 . (f) Sundberg, R. J.; Bloom, J. D. J. Org. Chem. 1980, 45, 3382. (g) Sundberg, R. J.; Bloom, J. D. J. Org. Chem. 1981, 46, 4836. (h) Mariano, P. S.; Dunaway-Mariano, D.; Huesmann, P. L. J. Org. Chem. 1979, 44, 124. (i) Wender, P. A.; Schaus, J. M.; White, A. W. J. Am. Chem. Soc. 1980, 102 , 6157. Dihydropyridine reviews: (j) Stout, D. M.: Meyers, A. I. Chem. Rev. 1982, 82, 223. (k) Kutney, J. P. Heterocycles 1977, 7, 593. (1) Eisner, U.; Kuthan, J. Chem. Rev. 1972, 72, 1.
(10) Beeken, P.; Bonfiglio, J. N.; Hasan, I.; Piwinski, J. J.; Weinstein, B.; Zollo, K. A.; Fowler, F. W. J. Am. Chem. Soc. 1979, 101, 6677.
(11) Raucher, S.: Lawrence, R. F. Tetrahedron 1983, 39, 3731.
(12) Raucher, S.; Lawrence, R. F. Tetrahedron Lett. 1983, $24,2927$.
for the preparation of $\mathbf{8}$, since the use of other reagents, including quinoline, 1.4-diazabicyclo[2.2.2]octane, or 1,8-diazabicyclo-[5.4.0]undec-7-ene (DBU), was not successful. The EtAlCl_{2} appears to be functioning as both a Lewis acid to assist in weakening the carbon-bromine bond toward heterolytic cleavage and as an acid scavenger ${ }^{13}$ to consume the liberated hydrogen bromide.

S $\mathrm{R}=\mathrm{PnCH}_{2}$
§ $R=E$

8

9

10
q series: $X=C l, Y=E ; \underline{b}$ series: $X=E, Y=C l$

Initially, the Diels-Alder reaction was carried out between 8 and methyl α-chloroacrylate to give a 1:1.4 mixture of the isomers 9 a and 9 b in 96% yield. ${ }^{8}$ Subsequently, it was found more advantageous to conduct the Diels-Alder reaction between 8 and α-chloroacryloyl chloride followed by treatment with methanol and triethylamine. This procedure afforded a $3: 1$ endo/exo ratio of 9a:9b in 90% overall yield. Treatment of the $3: 1$ mixture of $9 a$ and $9 b$ with excess freshly prepared trimethylsilyl iodide ${ }^{14}$ gave a mixture of 10 a and 10 b .

Although it is possible to separate $\mathbf{9 a}$ and $\mathbf{9 b}$ by flash chromatography, ${ }^{15}$ this is unnecessary for the synthesis of 1 . A comparison of the relative change in the chemical shifts for the methyl ester singlet in the carbamate 9 and the hydrogen iodide salt 10 allows the assignment of endo/exo stereochemistry. ${ }^{16}$ Thus, reaction of trimethylsilyl iodide with a pure sample of 9 a gave $\mathbf{1 0 a}$, and reaction of a pure sample of $\mathbf{9 b}$ gave $\mathbf{1 0 b}$. The chemical shifts for the methyl esters in 9 a and $\mathbf{1 0 a}$ differed by less than 0.05 ppm , whereas they differed by 0.4 ppm for $9 \mathbf{b}$ and $\mathbf{1 0 b}$. The ability of $\mathbf{1 0 b}$ to undergo intramolecular hydrogen bonding between the ammonium group and the methyl ester presumably causes the larger change in chemical shift. It is also noteworthy that $\mathbf{1 0 b}$ is considerably less stable than 10a, presumably due to iodidemediated cleavage of the methyl ester assisted by intramolecular protonation by the ammonium salt.

The mixture of 10 a and 10 b was reacted without purification first with O, N-bis(trimethylsilyl)acetamide ${ }^{17}$ and then with in-dole-3-acetyl chloride ${ }^{18}$ to provide the indoles 11a and 11b as a 3:1 mixture of isomers in 97% overall yield from 9 . The O, N bis(trimethylsilyl)acetamide functions as an acid scavenger in this reaction, and the acylation may proceed via the N-silylamine corresponding to 10. ${ }^{17}$ The above transformations were also carried out on pure samples of $9 a$ and $9 b$ in order to obtain pure samples
(13) Snider, B. B.; Rodini, D. J.; Conn, R.; Saelfon, S. J. Am. Chem. Soc. 1979, $101,5283$.
(14) (a) Sakurai, S.: Shirahata, A.; Sasaki, K.; Hosomi, A. Synthesis 1979, 740. (b) Olah, G. A.; Narang, S. C.; Gupta, B. G. B.; Malhotra, R. Angew. Chem., Int. Ed. Engl. 1979, 18, 612. (c) Seitz, D. E.; Ferreira, L. Synth. Commun. 1979, 9, 931.
(15) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
(16) Lawrence, R. F. Ph.D. Thesis, University of Washington, 1984.
(17) For the use of O, N-bis(trimethylsilyl)acetamide in the formation of carbamates from amines and alkyl chloroformates, see: Raucher, S.; Jones, D. S. Synth. Commun. 1985, $15,1025$.
(18) Shaw, E.; Woolley, D. W. J. Biol. Chem. 1953, 203, 979.
of 11a and 11b. Interestingly, solutions of pure 11a or 11b in CDCl_{3} were found to equilibrate to a $1: 1$ mixture of 11 a and 11 b when exposed to catalytic amounts of anhydrous HCl .

Numerous attempts to effect photochemical cyclization ${ }^{19}$ by irradiation of dilute solutions of 11a or 11b (or mixtures of 11a and 11 b) in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ containing NaHCO 3 with a 450-W Hanovia mercury lamp, with or without Pyrex or Vycor filters, afforded a complex mixture of products which contained only trace amounts of $\mathbf{1 2}$, despite the fact that the corresponding 20 -deethyl compound (mixture of endo/exo isomers) provides 5 -0xo- 20 -deethylcatharanthine in moderate yield under these reaction conditions. ${ }^{20}$ Although the factors responsible for the difference in behavior of 11 and 20-deethyl analogue are not certain, conformational preferences or solubility properties may be involved.

Reaction of the $\mathbf{3 : 1}$ mixture of $\mathbf{1 1 a}$ and $11 \mathbf{b}$ with Lawesson's reagent ${ }^{21}$ provided a 79% yield of the thioamide exclusively as the endo-isomer 13a. Interestingly, although attempts to convert a pure sample of $\mathbf{1 1 b}$ to a thioamide with either Lawesson's reagent or $\mathrm{P}_{2} \mathrm{~S}_{5}$ were not successful, when a 1:1.4 mixture of 11a and 11b was reacted with Lawesson's reagent in dimethoxyethane containing a catalytic amount of anhydrous HCl , the thioamide 13a was obtained in 70% yield, presumably via isomerization of $\mathbf{1 1 b}$ to 11a and subsequent thionation.

Irradiation of a dilute solution of 13 a in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ containing NaHCO_{3} with a 450 -W Hanovia mercury lamp through a Pyrex filter for 6 h provided 14 in 41% yield. The yield in the photochemical cyclization of 13 a to 14 was improved over our initial communication ${ }^{8}$ by the slow addition of a solution of 13a to the photochemical apparatus via syringe pump. The thiolactam 14 was reduced ${ }^{22}$ by treatment with $\mathrm{Et}_{3} \mathrm{OBF}_{4}$ followed by $\mathrm{NaBH}_{3} \mathrm{CN} / \mathrm{HOAc}$ to provide (\pm)-catharanthine (1) in 27% yield from 13a and an overall yield of 12% from 3-ethylpyridine.

Coupling of (\pm)-Catharanthine with $(-)$-Vindoline. Four diastereomers are theoretically possible from the coupling between $C(16)$ of (\pm)-catharanthine and $C(10)$ of $(-)$-vindoline. ${ }^{23}$ It has been shown, however, that the coupling of $(+)$-catharanthine with $(-)$-vindoline under properly controlled conditions gives only $(+)$-anhydrovinblastine (15 a) with the natural $\mathrm{C}\left(16^{\prime} S, 14^{\prime} R\right)$ configuration, and that and that none of the $\mathrm{C}\left(16^{\prime} R, 14^{\prime} R\right)$-diastereomer 16 a is formed. ${ }^{4}$ Although the coupling of $(-)$-catharanthine and (-)-vindoline could produce the C ($16^{\prime} R, 14^{\prime} S$)-diastereomer 17 a and the $\mathrm{C}\left(16^{\prime} S, 14^{\prime} S\right)$-diastereomer 18a, the formation of 17 a should predominate for the same stereoelectronic factors which favor the formation of 15a over 16a. Indeed, it has been reported that the coupling of (\pm)-20-deethylcatharanthine with (-)-vindoline gave $\mathbf{1 5 b}$ and $\mathbf{1 7 b}$, and none of the diastereomers $\mathbf{1 6 b}$ and $\mathbf{1 8 b}$ were detected. ${ }^{24}$

We have found that the coupling of our synthetic (\pm)-catharanthine with $(-)$-vindoline by the modified Polonovski reaction ${ }^{4}$ gave the ($16^{\prime} S, 14^{\prime} R$) diastereomer, (+)-anhydrovinblastine (15a),
(19) α-Chloroacetamide photocyclization review: (a) Sundberg, R. J. Organic Photochemistry; Padwa, A., Ed.; Marcel Dekker: New York, 1983; Vol. 6. For application to the synthesis of 20-deethylcatharanthine see ref $2 \mathrm{e}-\mathrm{g}$.
(20) Szantay, C.; Keve, T.; Bolcskel, H.; Acs, T. Tetrahedron Lett. 1983, 24, 5539 .
(21) Scheibye, S.; Pedersen, B. S.; Lawesson, S. O. Bull. Soc. Chim. Belg. 1978, 87, 229.
(22) Raucher, S.: Klein, P. Tetrahedron Lett. 1980, 2l, 4061. Also see ref $9 \mathrm{e}-\mathrm{g}$.
(23) Numbering system: Le Men, J.; Taylor, W. I. Experientia 1965, 18. 173.
(24) Gueritte, F.; Langlois, N.; Langlois, Y.; Sundberg, R. J.; Bloom, J. D. J. Org. Chem. 1981, 46, 5393.
which results from the coupling of (+)-catharanthine and (-). vindoline, in 46% yield based on (+)-catharanthine. The ($16^{\prime} R, 14^{\prime} S$) diastereomer, (-)-anhydrovincovaline (17a), which results from the coupling of $(-)$-catharanthine with $(-)$-vindoline, was also isolated in 54% yield based on (-)-catharanthine. There was no evidence for the formation of other diastereomeric dimers. The circular dichroism (CD) spectra for systems related to 15, 16, 17, and 18 are quite characteristic and allow for the assignment of configuration at $\mathrm{C}\left(16^{\prime}\right)$ and $\mathrm{C}\left(14^{\prime}\right) \cdot{ }^{4,24,25}$ Finally, it should be emphasized that since (+)-anhydrovinblastine (15a) and $(-)$-anhydrovincovaline (17a) are easily separated by flash chromatography, there is no need to resolve the synthetic (\pm)catharanthine prior to coupling.

Experimental Section

Gas chromtography was conducted with a $12-\mathrm{m}$ DB- 5 fused-quartz capillary column. HPLC was conducted with a 4.6 mm ID by 25 cm Altex $5 \mu \mathrm{~m}$ ultrasphere ODS column. Flash chromatography was performed with silica gel $60,40-63 \mu \mathrm{~m}$ (E. Merck). ${ }^{15}$

1-Benzyl-3-ethylpyridinium Chloride (4). A mixture of 3-ethylpyridine ($29.7 \mathrm{~g}, 319 \mathrm{mmol}$) and benzyl chloride ($40.7 \mathrm{~g}, 320 \mathrm{mmol}$) was left standing under argon at $20^{\circ} \mathrm{C}$ for 72 h . The resulting white solid was powdered, washed with $\mathrm{Et}_{2} \mathrm{O}$, and then dried in vacuo to give 4 (70.1 g , $300 \mathrm{mmol})$ in 94% yield: mp $152-153^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 60 \mathrm{MHz}\right)$ $\delta 1.32(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 2.95(\mathrm{dd}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{~s}, 2 \mathrm{H}), 7.2-7.5$ $(\mathrm{m}, 3 \mathrm{H}), 7.7-8.5(\mathrm{~m}, 4 \mathrm{H}), 9.85(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 10.2(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.

1-Benzyi-3-ethyl-1,2,5,6-tetrahydropyridine (5). To a suspension of $\mathrm{NaBH}_{4}(2.38 \mathrm{~g}, 68.4 \mathrm{mmol})$ in absolute $\mathrm{EtOH}(60 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added dropwise a solution of $4(4.00 \mathrm{~g}, 17.1 \mathrm{mmol})$ in absolute EtOH $(25 \mathrm{~mL})$ over 15 min . The mixture was then stirred at $0^{\circ} \mathrm{C}$ for 3 h , warmed to $25^{\circ} \mathrm{C}$, and stirred for 21 h . The EtOH was evaporated in vacuo, $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ was added to dissolve the salts, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated in vacuo. Distillation of the residue (bp $150^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$) gave $5(3.43 \mathrm{~g}, 17.1 \mathrm{mmol})$ in 100% yield as a pale yellow liquid of $>97 \%$ purity by capillary GC : ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 60 \mathrm{MHz}\right) \delta 0.97(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.6-2.3(\mathrm{~m}, 4$ H), $2.51(\mathrm{t}, J=5 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{~d}, J=2 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 5.4$ (br s, 1 H), 7.32 (s, 5 H).

1-Carbomethoxy-3-ethyl-1,2,5,6-tetrahydropyridine (6). A solution of $5(1.92 \mathrm{~g}, 9.54 \mathrm{mmol})$ and methyl chloroformate $(1.5 \mathrm{~mL}, 19 \mathrm{mmol})$ in benzene (20 mL) was heated at reflux for 5 h . The benzene was evaporated in vacuo, and the remaining liquid was distilled through a $10-\mathrm{cm}$ Vigreux column. The first fraction (bp $32{ }^{\circ} \mathrm{C}(0.4 \mathrm{~mm})$) was benzyl chloride. The second fraction ($\mathrm{bp} 77^{\circ} \mathrm{C}, 0.40 \mathrm{~mm}$) provided $6(1.34 \mathrm{~g}$, $7.93 \mathrm{mmol})$ in 83% yield as a colorless liquid: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 60$ $\mathrm{MHz}) \delta 1.0(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.7-2.3(\mathrm{~m}, 4 \mathrm{H}), 3.40(\mathrm{t}, J=6 \mathrm{~Hz}, 2$ H), $3.60(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~d}, J=2 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.

1-Carbomethoxy-trans-3,4-dibromo-3-ethylpiperidine (7). To a solution of $6(724 \mathrm{mg}, 4.29 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added a solution of $\mathrm{Br}_{2}(685 \mathrm{mg}, 4.29 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. When the orange color persisted the solution was stirred an additional 2 min , and one drop of cyclohexene was added. The solvent was evaporated in vacuo, and the residue was purified by flash chromatography ($50 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane) to give $7(1.26 \mathrm{~g}, 3.83 \mathrm{mmol})$ in 89% yield as a clear liquid which solidified on standing. Crystallization from acetone $/ \mathrm{H}_{2} \mathrm{O}$ gave white needles: mp 56-58 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 80 \mathrm{MHz}\right) \delta 1.1(\mathrm{t}, J=7 \mathrm{~Hz}$, $3 \mathrm{H}), 3.5-1.7(\mathrm{~m}, 6 \mathrm{H}), 3.7(\mathrm{~s}, 3 \mathrm{H}), 3.8-4.3(\mathrm{~m}, 2 \mathrm{H}), 4.6(\mathrm{~m}, 1 \mathrm{H})$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1710,1470,1450,1240$.

1-Carbomethoxy-3-ethyl-1,6-dihydropyridine (8). To a solution of 7 $(1.70 \mathrm{~g}, 5.18 \mathrm{mmol})$ in HMPA $(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added a $25 \% \mathrm{w} / \mathrm{w}$ solution of $E t \mathrm{AlCl}_{2}$ in hexane $(2.0 \mathrm{~g}, 8.8 \mathrm{~mL}, 16 \mathrm{mmol})$. The ice bath was removed, and the reaction was stirred under argon at $60^{\circ} \mathrm{C}$ for 1.5 h. The reaction solution was cooled to $\mathrm{O}^{\circ} \mathrm{C}$, quenched by the slow addition of ice-cold $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$. The combined $\mathrm{Et}_{2} \mathrm{O}$ extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 25 \mathrm{~mL})$ and brine (50 mL) and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was evaporated in vacuo to give $8(0.82 \mathrm{~g})$ as a pale yellow liquid of 88% purity by capillary GC. This compound is not stable to chromatography or distillation and should be used immediately. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 80 \mathrm{MHz}\right) \delta 1.0(\mathrm{t}, J=7 \mathrm{~Hz}$, $3 \mathrm{H}), 2.0(\mathrm{~m}, 2 \mathrm{H}), 3.7(\mathrm{~s}, 3 \mathrm{H}), 4.3(\mathrm{dd}, J=3,1 \mathrm{~Hz}, 2 \mathrm{H}), 5.6-5.9(\mathrm{~m}$, $2 \mathrm{H}), 6.5(\mathrm{~m}, 1 \mathrm{H})$; MS, $m / e 167\left(\mathrm{M}^{+}\right), 166,152,122,107,93,59$; UV (EtOH, $\lambda_{\max }$) $300 \mathrm{~nm}(\epsilon 5600)$.
(\pm)-1 $\alpha, 4 \alpha$-2-Azabicy clo[2.2.2]oct-7-ene-6 α-chioro-7-ethyl-2,6-dicarboxylic Acid Dimethyl Ester (9a) and (\pm)-1 $\alpha, 4 \alpha$-2-Azabicyclo-

[^3][2.2.2]oct-7-ene-6 β-chloro-7-ethyl-2.6-dicarboxylic Acid Dimethyl Ester (9b). Method 1. A solution of crude 8 ($1.14 \mathrm{~g}, 88 \%$ pure, 6.0 mmol), methyl α-chloroacrylate ($1.45 \mathrm{~g}, 12.0 \mathrm{mmol}$), and hydroquinone (45 mg , 0.4 mmol) in dry toluene (3 mL) was heated at $95^{\circ} \mathrm{C}$ with stirring for 22 h . The toluene and excess methyl α-chloroacrylate were evaporated in vacuo, and the resulting viscous liquid was purified by flash chromatography ($95 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$) to yield a $1: 1.4$ mixture of $9 \mathbf{9}$ to $\mathbf{9 b}(1.60$ g, 5.57 mmol) as a pale yellow liquid in 93% yield: IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ $1760,1723,1465,1404 ;$ MS, $m / e 289\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}\right), 287\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right), 258$, 256, 230, 228, 168, 167,166,152,122,108,107. Pure samples of 9 a and 9 b could be obtained by repeated careful flash chromatography $(95 \%$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$). The NMR of these compounds is complicated by the presence of carbamate rotomers. 9a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ 1.0 (overlapping t, $J=7 \mathrm{~Hz}, 3 \mathrm{H}$), 1.96 (dd, $J=13,8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.2 $(\mathrm{m}, 2 \mathrm{H}), 2.8(\mathrm{~m}, 2 \mathrm{H}), 3.0(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (s), 3.75 (s), 3.7 (s), and $3.80(\mathrm{~s})($ total 6 H$), 4.93(\mathrm{~s}, 0.5 \mathrm{H}), 5.13(\mathrm{~s}$, $0.5 \mathrm{H}), 6.0(\mathrm{~m}, 1 \mathrm{H}) .9 \mathrm{~b}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.1$ (overlapping $\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~m}, 1 \mathrm{H}), 2.3(\mathrm{~m}, 2 \mathrm{H}), 2.9(\mathrm{~m}, 2 \mathrm{H})$, $3.1(\mathrm{~m}, 1 \mathrm{H}), 3.7(\mathrm{~m}, 7 \mathrm{H}), 5.1(\mathrm{~m}, 1 \mathrm{H}), 6.1(\mathrm{~m}, 1 \mathrm{H})$.
(\pm)-1 $\alpha, 4 \alpha$-2-Azabicyclo[2.2.2]oct-7-ene-6 α-chioro-7-ethyl-2,6-dicarboxylic Acid Dimethyl Ester (9a) and (\pm)-1 $\alpha, 4 \alpha$-2-Azabicyclo-[2.2.2]oct-7-ene-6 β-chloro-7-ethyl-2,6-dicarboxylic Acid Dimethyl Ester (9b). Method 2. To a solution of α-chloroacrylic acid ($770 \mathrm{mg}, 7.23$ mmol) in dry $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{PCl}_{5}(1.66 \mathrm{~g}, 7.95 \mathrm{mmol})$. The cloudy mixture was stirred for 40 min until the PCl_{5} had dissolved. The $\mathrm{Et}_{2} \mathrm{O}$ was evaporated in vacuo to give a mixture of α-chloroacryloyi chloride and POCl_{3}, which codistill at $98-105^{\circ} \mathrm{C}$, as a colorless liquid: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 80 \mathrm{MHz}\right) \delta 6.58(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.1(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H})$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1775,1617,1310(\mathrm{P}=\mathrm{O})$. Dry toluene (1 mL) was added to this mixture of α-chloroacryloyl chloride and POCl_{3}, the solution was cooled to $0^{\circ} \mathrm{C}$ under argon, and a solution of crude $8(0.334 \mathrm{~g}, 83 \%$ pure, 1.66 mmol) in dry toluene (1.75 mL) was slowly added at $0^{\circ} \mathrm{C}$. The reaction solution was stirred at $0^{\circ} \mathrm{C}$ for 2 h and then at $25^{\circ} \mathrm{C}$ for 12 h . The reaction was quenched with 20% $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{MeOH}(15 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined $\mathrm{Et}_{2} \mathrm{O}$ extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, the solvents were removed in vacuo, and the resulting viscous liquid was purified by flash chromatography $\left(95 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}\right)$ to give a $3: 1$ mixture of 9 a and $9 \mathbf{b}(427 \mathrm{mg}, 1.49 \mathrm{mmol})$ in 90% yield.

Indole-3-acetyl Chloride. Indole-3-acetic acid ($2.0 \mathrm{~g}, 11.5 \mathrm{mmol}$) and $\mathrm{PCl}_{5}(2.87 \mathrm{~g}, 13.8 \mathrm{mmol})$ were combined in dry $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon and stirred at $0^{\circ} \mathrm{C}$ for 30 min until the solids dissolved. Approximately 75% of the $\mathrm{Et}_{2} \mathrm{O}$ was evaporated in vacuo, cold $\left(0^{\circ} \mathrm{C}\right)$ hexane (150 mL) was added, and the solution was filtered. The filtrate was cooled to $-78^{\circ} \mathrm{C}$, and the crystals which formed were collected to provide indole-3-acetyl chloride ($1.78 \mathrm{~g}, 9.10 \mathrm{mmol}$) as colorless flakes in 80% yield: $\mathrm{mp} 63-65^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{18} \mathrm{mp} 68^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 80\right.$ $\mathrm{MHz}) \delta 4.25(\mathrm{~s}, 2 \mathrm{H}), 6.9-7.3(\mathrm{~m}, 4 \mathrm{H}), 7.4-7.6(\mathrm{~m}, 1 \mathrm{H}), 7.95(\mathrm{br} \mathrm{s}$, $1 \mathrm{H})$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 3490,1806,1467,1428$.
(\pm)-1 $\alpha, 4 \alpha$-2-Azabicyclo[2.2.2]oct-7-ene-6 α-chloro-7-ethyl-6-carboxylic Acid Methyi Ester Hydrogen Iodide Salt (10a) and (土)-1 $\alpha, 4 \alpha-2$-Azabi-cyclo[2.2.2]oct-7-ene-6 β-chloro-7-ethyi-6-carboxylic Acid Methyl Ester Hydrogen Iodide Salt (10b). A mixture of $\mathrm{I}_{2}(952 \mathrm{mg}, 3.75 \mathrm{mmol})$ and hexamethyldisilane ($1.10 \mathrm{~g}, 7.50 \mathrm{mmol}$) was heated at $120^{\circ} \mathrm{C}$ under argon with stirring until a colorless solution resulted (15 min). The solution was cooled to $25^{\circ} \mathrm{C}$, and a $3: 1$ mixture of 9 a and $9 \mathrm{~b}(0.98 \mathrm{~g}$, $3.41 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h and quenched with $\mathrm{MeOH}(10 \mathrm{~mL})$, and the solvents were evaporated in vacuo to yield a mixture of hydrogen iodide salts 10 a and $10 \mathrm{~b}(1.22 \mathrm{~g}, 3.41 \mathrm{mmol})$ as an orange foam: IR $\left(\mathrm{CHCl}_{3}\right.$, cm^{-1}) $3030-2600,1765,1755$. Reaction of a pure sample of 9 a by the same procedure gave 10a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.05(\mathrm{t}, J=$ $8.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.02$ (dd, $J=14,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~m}$, $1 \mathrm{H}), 2.75(\mathrm{dt}, J=14,3 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.8(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.15(\mathrm{~s}, 1 \mathrm{H}), 6.14(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.5(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$. Reaction of a pure sample of 9 b by the same procedure gave $10 \mathrm{~b}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 80 \mathrm{MHz}\right) \delta 1.15(\mathrm{t}, J$ $=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.7-3.5(\mathrm{~m}, 6 \mathrm{H}), 4.0(\mathrm{~s}, 3 \mathrm{H}), 4.67(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{~m}$, $1 \mathrm{H}), 6.4-6.1$ (m, I H), 8.1 (br s, 1 H), 9.0 (br s, 1 H). The HI salt 10b is not very stable at $25^{\circ} \mathrm{C}$, presumably due to iodide-mediated cleavage of the methyl ester assisted by intramolecular protonation from the ammonium salt.
(土)-1 $\alpha, 4 \alpha$-2-Azabicyclo[2.2.2]oct-7-ene-2-[1-(2-(indol-3-yI)-1-oxoethyl)]-6 α-chloro-7-ethyl-6-carboxylic Acid Methyl Ester (11a) and (\pm)-1 $\alpha, 4 \alpha$-2-Azabicyclo[2.2.2]oct-7-ene-2-[1-(2-(indol-3-yl)-1-oxo-ethyl)]-6 β-chloro-7-ethyl-6 β-carboxylic Acid Methyl Ester (11b). The crude hydrogen iodide salts 10 a and 10 b ($1.22 \mathrm{~g}, 3.41 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ to give a deep red solution. The solution was cooled to $0^{\circ} \mathrm{C}$ under argon, and bis(trimethylsilyl)acetamide (1.53 g , 7.50 mmol) was added rapidly, causing the solution to become pale
yellow. The solution was stirred for 30 min at $0^{\circ} \mathrm{C}$, and then a solution of indole-3-acetyl chloride ($1.32 \mathrm{~g}, 6.82 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added. The ice bath was removed and the reaction stirred an additional 3 h at $25^{\circ} \mathrm{C}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was washed with an aqueous solution which was 1 M in NaHCO_{3} and 0.5 M in $\mathrm{KF}(2 \times 25 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvents were removed in vacuo to give a dark foam $(1.65 \mathrm{~g})$, which was purified by flash chromatography $\left(75 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ EtOAc) to provide a $3: 1$ mixture of 11 a and $11 \mathrm{~b}(1.20 \mathrm{~g}, 3.10 \mathrm{mmol})$ in 91% yield as an off-white foam: $\mathrm{mp} 58-64^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 3800$, 3110-2810, 1755, 1650, 1470, 1420; UV (EtOH, $\lambda_{\max }$) $219.5 \mathrm{~nm}(\epsilon$ 4600); HREIMS calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3} 386.1395\left({ }^{35} \mathrm{Cl}\right)$, found 386.1367. The same procedure was utilized starting with a pure sample of 10a to give 11a. The NMR is complicated by the presence of a $1: 1$ mixture of rotamers: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.68(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1.5 \mathrm{H}), 1.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.6(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=13.5$, $3 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.97$ (dd, $J=13.5,3 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{~m}$, $0.5 \mathrm{H}), 2.79(\mathrm{~m}, 0.5 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{dt}, J=10,4 \mathrm{~Hz}, 0.5 \mathrm{H})$, $3.12(\mathrm{dt}, J=10,4 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.53(\mathrm{~m}, \mathrm{l} \mathrm{H}), 3.77(\mathrm{~s}, 1.5 \mathrm{H}), 3.74(\mathrm{~s}$, $1.5 \mathrm{H}), 3.92(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J$ $=2 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.72(\mathrm{~d}, J=2 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.97(\mathrm{~m}, 1 \mathrm{H}), 7.0-7.2(\mathrm{~m}$, $3 \mathrm{H}), 7.34(\mathrm{~d}, J=7,1 \mathrm{H}), 7.57(\mathrm{~d}, J=7 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.68(\mathrm{~d}, J=7 \mathrm{~Hz}$, 0.5 H), 8.3 (overlapping singlets, 1 H). The same procedure was utilized starting with a pure sample of $\mathbf{1 0 b}$ to give 11 b which was crystallized from chloroform/hexane, $\mathrm{mp} 136-140^{\circ} \mathrm{C}$. The NMR is complicated by the presence of a $2: 1$ mixture of rotomers: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta 0.87(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.2(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.0-2.5(\mathrm{~m}, 4 \mathrm{H})$, $2.92(\mathrm{q}, J=5 \mathrm{~Hz}, 0.3 \mathrm{H}), 3.11(\mathrm{t}, J=5 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.22(\mathrm{~d}, J=10.5$ $\mathrm{Hz}, 0.7 \mathrm{H}$), 3.6-3.9 (m with s at 3.76 and $3.81,6 \mathrm{H}$), $4.12(\mathrm{~d}, J=10.5$ $\mathrm{Hz}, 0.3 \mathrm{H}), 4.77(\mathrm{br} \mathrm{s}, 0.3 \mathrm{H}), 4.96(\mathrm{brs}, 0.7 \mathrm{H}), 6.61(\mathrm{~s}, 0.7 \mathrm{H}), 6.67$ $(\mathrm{s}, 0.3 \mathrm{H}), 7.1(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=8 \mathrm{~Hz}, 0.3 \mathrm{H}), 7.18(\mathrm{t}, J=8 \mathrm{~Hz}$, $0.7 \mathrm{H}), 7.32(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8 \mathrm{~Hz}, 0.7 \mathrm{H}), 7.57(\mathrm{~d}, J=8 \mathrm{~Hz}, 0.3$ H), 8.13 (br s, 0.3 H), 8.18 (br s, 0.7 H).

Photocyclization of 11 a . A solution of $11 \mathrm{a}(120 \mathrm{mg}, 0.310 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(0.52 \mathrm{~g}, 6.2 \mathrm{mmol})$ in $\mathrm{MeOH}(112 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(168 \mathrm{~mL})$ in a $350-\mathrm{mL}$ photochemical apparatus was purged with argon and irradiated with a $450-\mathrm{W}$ medium-pressure mercury lamp through a Pyrex filter for 2 h at which time 11a could no longer be detected by HPLC $\left(80 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}\right)$. The solvent volume was decreased by 30% in vacuo, saturated with NaCl , and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The extracts were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo to give a brown foam (120 mg). TLC $(50 \% \mathrm{EtOAc} /$ hexane $)$ showed a streak of many compounds ($R_{f} 0.15-0.70$). Although attempts to isolate a pure sample of 12 by flash chromatography were not successful, a mixture containing 11 a and $12(49 \mathrm{mg})$ was obtained from the fractions with $R_{f}>0.45$. This mixture was reacted with Lawesson's reagent (34 $\mathrm{mg}, 0.080 \mathrm{mmol})$ in 1,2 -dimet hoxyethane (1 mL) at $80^{\circ} \mathrm{C}$ under argon for 4 h . The 1,2-dimethoxyethane was removed in vacuo, and the residue was subjected to flash chromatography ($95 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$) to give an off-white foam (24 mg), which contained 14, 13a, and other unidentified compounds as indicated by ${ }^{1} \mathrm{H}$ NMR. The mixture was dissolved in THF (2 mL), methyl iodide (0.5 mL) was added, and the resulting solution was stirred at $25^{\circ} \mathrm{C}$ for 10 h . The solution was evaporated in vacuo, and the residue was dissolved in $\mathrm{MeOH}(1 \mathrm{~mL})$, cooled to $0^{\circ} \mathrm{C}$, and treated with $\mathrm{NaBH}_{3} \mathrm{CN}(26 \mathrm{mg}, 0.41 \mathrm{mmol})$. The mixture was stirred for 10 min while warming to $25^{\circ} \mathrm{C}, 25 \% \mathrm{HOAc} / \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ was added, and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was treated with 5% aqueous $\mathrm{NaOH}(25 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined extracts were dried ($\mathrm{K}_{2} \mathrm{CO}_{3}$), the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed in vacuo, and the resulting brown foam (28 mg) was purified by flash chromatography ($75 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}$ $\mathrm{OAc})$ to give (\pm)-catharanthine (1) ($3 \mathrm{mg}, 0.009 \mathrm{mmol}$). Similar results were obtained for the reaction of 11b or mixtures 11a and 11b in either $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$.
(\pm)-1 α, 4 α-2-Azabicyclo[2.2.2]oct-7-ene-2-[1-(2-(indol-3-yl)-1-thiooxoethyl) $]-6 \alpha$-chloro-7-ethyl-6-carboxylic Acid Methyl Ester (13a). To a solution of a $3: 1$ mixture of amides 11 a and 11 b ($320 \mathrm{mg}, 0.829 \mathrm{mmol}$) in dry 1,2-dimethoxyethane (20 mL) under argon was added Lawesson's reagent ($268 \mathrm{mg}, 0.663 \mathrm{mmol}$, freshly recrystallized from toluene), and the mixture was stirred at $65^{\circ} \mathrm{C}$ for 1 h . The solvent was removed in vacuo, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, and the solution was washed with $\mathrm{H}_{2} \mathrm{O}$, dried (MgSO_{4}), and concentrated to give a brown foam. The solid was purified by flash chromatography ($95 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$) followed by crystallization from $\mathrm{CH}_{3} \mathrm{CN}$ to give the thioamide 13 a ($260 \mathrm{mg}, 0.650 \mathrm{mmol}$) in 79% yield: $\mathrm{mp} 137-139^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 3495,1760,1460,1440,1270$, 1170; HREIMS calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S} 402.1166$, found 402.1155 ; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$) ($2: 1 \mathrm{mixture}$ of rotomers) $\delta 0.5(\mathrm{t}, J=7.2$, $2 \mathrm{H}), 0.8(\mathrm{~d}, J=7.2,0.7 \mathrm{H}), 1.05(\mathrm{t}, J=7.2,1 \mathrm{H}), 1.4(\mathrm{~d}, J=7.2,0.7$ $\mathrm{H}), 1.87(\mathrm{dd}, J=13,2 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~d}, J=7.2,0.3 \mathrm{H}), 2.12(\mathrm{~d}, J$ $=7.2,0.3 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 2.8(\mathrm{~m}, 0.3 \mathrm{H}), 2.94(\mathrm{~m}, 0.7 \mathrm{H}), 3.23(\mathrm{dt}$, $J=13.5,2.5 \mathrm{~Hz}, 0.3 \mathrm{H}), 3.45(\mathrm{dt}, J=13.5,2.5 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.68(\mathrm{~s} .2$

H）， $3.80(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=13.5,2 \mathrm{~Hz}, 0.3 \mathrm{H}), 3.84$（dd，$J=13.5$ ， $2 \mathrm{~Hz}, 0.7 \mathrm{H}), 4.70-4.25(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 6.0(\mathrm{~m}, 1$ H）， $7.3-6.9(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}$ ， $0.3 \mathrm{H}), 7.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 0.7 \mathrm{H}), 8.02$（br s， 0.3 H ）， 8.09 （br s， 0.7 H）；UV（EtOH，$\lambda_{\text {max }}$ ） $220 \mathrm{~nm}(\epsilon 17800), 274 \mathrm{~nm}(\epsilon 9000)$ ．

Photocyclization of 13a to（ \pm ）－5－Thiooxocatharanthine（14）．A so－ lution of $\mathrm{CH}_{3} \mathrm{CN}(88 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(212 \mathrm{~mL})$ ，and $\mathrm{NaHCO}_{3}(0.39 \mathrm{~g}, 4.7$ mmol ）in a $350-\mathrm{mL}$ photochemical apparatus was degassed with argon and irradiated with a 450－W medium－pressure mercury vapor lamp through a Pyrex filter．A solution of $13 \mathrm{a}(95.0 \mathrm{mg}, 0.236 \mathrm{mmol}$ ）in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ was injected into the photochamber via syringe pump at $0.27 \mathrm{~mL} / \mathrm{min}$ ．The solution was irradiated an additional 6 h ，at which time HPLC $\left(80 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}\right)$ indicated that no starting material remained．The solution was saturated with NaCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$ ．The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ ，and the solvent was evaporated in vacuo to give an off－white foam（ 76 mg ）which was purified by flash chromatography（ 95% $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ ）and crystallized from $\mathrm{Et}_{2} \mathrm{O}$ to yield 14 （ $35.3 \mathrm{mg}, 0.096$ mmol ）as white cubes in 41% yield： $\mathrm{mp} 233-235^{\circ} \mathrm{C}$ ；IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ 3490，3460，1740；HREIMS caled for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 366.1399$ ，found 366．1386；${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.1(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.82$ $(\mathrm{d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.3(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.7(\mathrm{~m}, 1 \mathrm{H}), 3.0(\mathrm{~m}, 1$ H）， $3.32(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{dd}, J=12.8,4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.5(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{dd}, J=7.3,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.1-7.2(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.6(\mathrm{~d}, J=8 \mathrm{~Hz}$ ， $1 \mathrm{H}), 8.0$（br s， 1 H ）．
（土）－Catharanthine（1）．To a solution of $14(0.20 \mathrm{~g}, 0.545 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ cooled to $0^{\circ} \mathrm{C}$ under argon was added a 1.0 M solution of $\mathrm{Et}_{3} \mathrm{OBF}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.8 \mathrm{~mL}, 0.709 \mathrm{mmol})$ ，and the solution was stirred for 30 min ．The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated in vacuo， MeOH （ 8 mL ）was added，the solution was cooled to $0^{\circ} \mathrm{C}$ ，and $\mathrm{NaBH}_{4}(0.206$ $\mathrm{g}, 3.27 \mathrm{mmol}$ ）was added slowly．The mixture was stirred for 15 min ， $50 \% \mathrm{MeOH} /$ acetic acid（ 4 mL ）was added，and the solution was stirred at $25^{\circ} \mathrm{C}$ for 4 h ．The reaction mixture was poured into 5% aqueous $\mathrm{NaOH}(100 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ ， and again with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ ．The combined organic extracts were dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and the solvent was evaporated in vacuo to give crude 1 （172 mg ）as an off－white solid，which was further purified by flash chroma－ tography（ $50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ ）and crystallization from $\mathrm{Et}_{2} \mathrm{O}$ to yield (\pm)－catharanthine（ 1 ）（ $120 \mathrm{mg}, 0.360 \mathrm{mmol}$ ）as white cubes in 65% yield： $\mathrm{mp} \mathrm{163-164}{ }^{\circ} \mathrm{C}\left(\right.$ lit．${ }^{7 \mathrm{a}} \mathrm{mp} 61-63^{\circ} \mathrm{C}$ from MeOH ；lit．${ }^{7 \mathrm{c}} \mathrm{mp} 175-176^{\circ} \mathrm{C}$ dec from MeOH ）；IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 3460,3500-3300,1740,1460$ ， 1440，1250，1140；HREIMS calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} 336.1838$ ，found 336．1839：${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.08(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.79$ （dd，$J=12,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 2.73$（dd，$J=$ $7,2 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{dt}, J=14,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29$（ddd， $J=14,9,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dt}, J=11,4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$（ddd，$J=$ $11,9,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{dd}, J=7,1.5 \mathrm{~Hz}$ ， $1 \mathrm{H}), 7.1(\mathrm{t}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=7,8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=$ $8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65$（br s， 1 H$)$ ．
（ \pm ）－Anhydrovinblastine $\left[(+)-\Delta^{15 \prime} \mathbf{2 0} 0^{\prime}\right.$－Dehydroxyvinblastine］（15a）and （－）－Anhydrovincoivaline［（－）－$\Delta^{15^{\prime}} \mathbf{2 0 ^ { \prime }}$－Dehydroxyvincolvaline］（17a）by the Polonovski Coupling（ \pm ）－Catharanthine（1）with（－）－Vindoline（2）．To a solution of（ \pm ）－catharanthine（ $31.6 \mathrm{mg}, 0.094 \mathrm{mmol}$ ）in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ （ 1 mL ）cooled to $-3^{\circ} \mathrm{C}$ was added $100 \% \mathrm{~m}$－chloroperoxybenzoic acid （ $18.7 \mathrm{mg}, 0.108 \mathrm{mmol}$ ）．The solution was stirred for 10 min ，a solution of（ - ）－vindoline（ $47.2 \mathrm{mg}, 0.103 \mathrm{mmol}$ ）in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added， and the solution was cooled to $-42^{\circ} \mathrm{C}$ at which time a precipitate formed． Trifluoroacetic anhydride（ $118 \mathrm{mg}, 0.56 \mathrm{mmol}$ ）was added rapidly via
microsyringe，the precipitate dissolved and the color of the reaction mixture changed from pale yellow to deep burgundy within 15 min ．The solution was stirred at $-42^{\circ} \mathrm{C}$ for 3 h ，and the cold solution was poured into a solution of $\mathrm{EtOH}(5 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(250 \mathrm{mg})$ ．Water $(20 \mathrm{~mL})$ was added，and the solution was extracted with chloroform（ $3 \times 15 \mathrm{~mL}$ ）． The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered，and the solvent was removed in vacuo to yield a light brown foam（ 80 mg ）which was purified by flash chromatography（ $15 \% \mathrm{MeOH} / \mathrm{EtOAc}$ ）．The first fractions contained a mixture of 17 a and unreacted（ - ）－vindoline．Iso－ lation of subsequent fractions and crystallization from MeOH provided $(+)$－anhydrovinblastine（ 15 a ）（ $17.0 \mathrm{mg}, 0.0214 \mathrm{mmol}$ ）in 46% yield based on（ + ）－catharanthine： $\mathrm{mp} 208-211^{\circ} \mathrm{C}$ ：（lit．${ }^{4 \mathrm{f}} \mathrm{mp} 208-210^{\circ} \mathrm{C}$ ；lit．.$^{4 i} \mathrm{mp}$ $\left.171-173{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{D}{ }^{22}+19^{\circ}\left(c 0.34 \mathrm{CHCl}_{3}\right) ;\left[\right.$ lit．${ }^{4 f}[\alpha]_{D}{ }^{22}+19^{\circ}(c 0.47$ $\left.\mathrm{CHCl}_{3}\right)$ ］；${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.79(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.00$ $(\mathrm{t}, J=8 \mathrm{~Hz}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 5.29(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 5.51(\mathrm{~m}, 1 \mathrm{H}), 5.83(\mathrm{~m}$, $1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 7.1(\mathrm{~m}, 3 \mathrm{H}), 7.60(\mathrm{~d}, J=7 \mathrm{~Hz}, 1$ H）， $8.04(\mathrm{~s}, 1 \mathrm{H}), 9.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$ ；HREIMS calcd for $\mathrm{C}_{61} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{8}$ 792.4100 ，found 792.4095 （b），761，733，669，633，509，446，336，335； $\mathrm{CD}\left(\mathrm{EtOH}, \lambda_{\max }\right) 305 \mathrm{~nm}(\Delta \epsilon+6.7), 258 \mathrm{~nm}(\Delta \epsilon+14.0), 227 \mathrm{~nm}(\Delta \epsilon$ ＋23．0）；UV（EtOH，$\lambda_{\max }$ ） 222 （ $\epsilon 45300$ ）， 261 （ $\epsilon 18600$ ）， 288 （ $\epsilon 14700$ ）， $295 \mathrm{~nm}(\epsilon 13700)$ ；IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 3460,1740,1620$ ．The solvents from the first fractions of the above chromatography were removed in vacuo，and the residue was purified by a second flash chromatography $\left(95 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ ）．The initial fractions contained unreacted（ - ）－ vindoline（ $20 \mathrm{mg}, 0.044 \mathrm{mmol}$ ），and subsequent fractions provided $(-)$－anhydrovincovaline（ $\mathbf{1 7 a}$ ）（ $20 \mathrm{mg}, 0.0252 \mathrm{mmol}$ ）as a white powder in 54% yield based on（－）－catharanthine： $\mathrm{mp} 196-199^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}{ }^{22}-104^{\circ}$ $(c 0.70 \mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.36(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H})$ ， $1.01(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.80$ （s， 3 H ）， $3.81(\mathrm{~s}, 3 \mathrm{H}), 5.21(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 5.55(\mathrm{~m}$, $1 \mathrm{H}), 5.78(\mathrm{dd}, J=6,4 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.1$ （m，1 H）， $7.2(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.06$（s，1 H）， 9.58 （br s， 1 H ）；HREIMS calcd for $\mathrm{C}_{46} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{8} 792.4100$ ，found 792．4095， 733 ， $669,633,446,352,336,335,282,231$（b）；CD（EtOH，$\left.\lambda_{\max }\right) 305 \mathrm{~nm}$ $(\Delta \epsilon-5), 284 \mathrm{~nm}(\Delta \epsilon-3), 258 \mathrm{~nm}(\Delta \epsilon+3), 225 \mathrm{~nm}(\Delta \epsilon-20) ; \mathrm{UV}(\mathrm{EtOH}$ ， $\left.\lambda_{\max }\right) 213 \mathrm{~nm}(\epsilon 51500), 256 \mathrm{~nm}(\epsilon 15800), 289 \mathrm{~nm}(\epsilon 12300), 296 \mathrm{~nm}$ （ $\epsilon 12300$ ）：IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 3460,1745,1628,1620$.

Acknowledgment．We thank Professor J．P．Kutney（University of British Columbia）for providing us with an authentic sample of（＋）－catharanthine，Professor R．J．Sundberg（University of Virginia）for providing us with a sample of 5－oxo－20－deethyl－ catharanthine，and Eli Lilly for a sample of（ - ）－vindoline．This investigation was supported by PHS Grant No．CA－32976， awarded by the National Cancer Institute，DHHS．MS data were obtained on a VG 7070 GC／MS and associated VG 2035F／B data system funded by NIH Biomedical Research Development Grant 1508 RR 09082.

Registry No．（ \pm ）－1，20395－98－6；2，2182－14－1；4，87167－73－5；5， 60900－14－3；6，77612－52－3；（ \pm ）－7，105729－47－3；8，72298－15－8；（ \pm ）－9a， 97431－27－1；（土）－9b，97549－00－3；（土）－10a，97431－28－2；（土）－10b，97549－ 96－7；（土）－11a，105729－48－4；（土）－11b，105816－49－7；（土）－12，105729－49－5； （ \pm ）－13a，105729－51－9；（土）－14，105729－50－8；15a，38390－45－3；17a， 105815－31－4；3－ethylpyridine，536－78－7；3－indoleacetyl chloride，50720－ 05－3；methyl α－chloroacrylate，80－63－7；3－indoleacetic acid，87－51－4； α－chloroacryloyl chloride，21369－76－6；α－chloroacrylic acid，598－79－8．

[^0]: (24) This value of $K_{i j}$ is taken from ref 6 but corrected from that reported $\left(9 \times 10^{3} \mathrm{M}\right)$ owing to that source's use of a different solubility for H_{2} in benzene ($0.002 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~atm}^{-1}$) than used here ($0.0028 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~atm}^{-1}$) (taken from ref 12).

[^1]: (1) Fellow of the Alfred P. Sloan Foundation (1980-1984). Recipient of an NIH Research Career Development Award CA 00864 (1983-1988). (2) (a) The Pharmacological Basis of Therapeutics, 7th ed.; Goodman, L. S., Gilman, A., Rall, T. W., Murad, F., Eds.; Macmillan: New York, 1985. (b) Neuss, N.; Johnson, I. S.; Armstrong, J. G.; Jansen, C. J. Adv. Chemother. 1964, $l, 133$. (c) Taylor, W. I.; Farnsworth, N. R. The Catharanthus Alkaloids; Marcell Dekkker: New York, 1975. (d) Gerzon, K. Med. Medicinal Chemistry; Cassady, J. M., Douros, J. D., Eds.; Academic: New York, 1981; Vol. 16. (e) Jewers, K. Prog. Drug. Res. 1981, 25, 275. (f) Antineoplastic Agents; Remers, W. A., Ed.; Wiley: New York, 1984. (g) Anticancer and Interferon Agents; Ottenbrite, M., Butler, G. B., Eds.; Dekker: New York, 1984. (h) Phamacological Principles of Cancer Treatment; Chabner, B., Ed.; Saunders: Philadelphia, 1982.
 (3) Buchi, G. Chimia 1975, 29, 172. Also see ref 2 c .

[^2]: (4) Reviews: (a) Kutney, J. P. Lect. Heterocycl. Chem. 1978, 4, 59. (b) Potier, P. J. Nat. Prod. 1980, 43, 72. (c) Lounasmaa, M.; Nemes, A. Tetrahedron 1982, 38, 223. (d) Atta-ur-Rahman J. Chem. Soc. Pak. 1979, l, 81. (e) Lounasmaa, M.; Koskinen, A. Heterocycles 1984, 22, 1591. Specific procedures: (f) Potier, P.; Langlois, N.; Langlois, Y.; Gueritte, F. J. Chem. Soc., Chem. Commun. 1975, 670. (g) Langlois, N.; Gueritte, F.; Langlois, Y.; Potier, P. J. Am. Chem. Soc. 1976, 98, 7017. (h) Mangeney, P.; Andriamialisoa, R. Z.; Langlois, N.: Langlois, Y.; Potier, P. J. Am. Chem. Soc. 1979, 101, 2243. (i) Kutney, J. P.; Ratcliffe. A. H.; Tresurywala, A. M.; Wunderly, S. Heterocycles 1975, 3, 639. (j) Kutney, J. P.; Hibino, T.; Jahngen, E.; Okutani, T.; Ratcliffe, A. H.; Tresurywala, A. M.; Wunderly, S. Helv. Chim. Acta 1976, 59, 2858. (k) Atta-ur-Rahr an; Basha, A.: Ghazala, M. Tetrahedron Lett. 1976, 2351. (1) Honma, Y.; Ban, Y. Tetrahedron Lett. 1978, 155.
 (5) (a) Gorman, M.; Neuss, N.; Svoboda, G. H.; Barnes A. J., Jr.; Cone, N. J. J. Am. Pharm. Assoc., Sci. Ed. 1969, 48, 256. (b) Gorman, M.; Neuss, N.; Biemann, K. J. Am. Chem. Soc. 1962, 84, 1058.

[^3]: (25) Andriamialioa, R. Z.; Langlois, N.; Potier, P. Tetrahedron Lett. 1976, 17, 2849.

